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Short Paper

FEEDBACK STABILIZATION OF DISTRIBUTED SYSTEMS
Henry Hermes'
Department of Mathematics, Box 426
University of Colorado
Boulder, Colorado 80309
Introduction. -We consider- stabilization (minimum time to the zero solution) of wave and

beam equations via endpoint velocity control. In general, consider a control system described

o+ 1 partial differential equation, with dependent variable denoted w = w(t,x), which admits

V= N as a symmetry generator and hence a conservation law which implies conservation of

energy, denoted e(w(t,¢)). For the problems considered, it is shown that ﬁ e(w(t,")) is a con-

vex function of the control u; the value u* which minimizes this can be expressed in feedback

form, ie., if w(t,*) belongs to a Banach space B and I/: B — R* is a closed linear map (a

finite dimensional measurement on the state of th. system; the output of sensors), then the

optimal control will have the form u* = I{w(t,")).

The energy decay of solutions of wave, or beam, equations via boundary control has

received much attention in the recent literature. In [1], the wave equation

w _ ¢ 2 ) O _
p(\() atg —"jz-:l (9X~\ (au(‘\)) ax) —Ov (1)

with t >0, x €QC R", € open, bounded, connected and with boundary 30 =T, is studied.
Assume p(x) > po > 0; the matrix A ={o,(x)) is positive definite symmetric (i.e., the inner

product (€, A(x)€) > )€ for some ay > 0). Partition the boundary as =T, UT, with

»ﬁ»"m&fo@‘w.;m«mﬁfxﬁ N

'This research was supported by AFO<R grant AFOSR 86-0198.
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[, relatively open and require w(t,x) =0 on [, w(t,x) =h(t,x) a control for x € [.. The

energy of a solution w of (1) is

e(w(t, ")) = {

D |

) f [P(x)w2(t,x) + (wi(t,x), A(x)w,(t,x))]dx . (2)
0
If w satisfies (1) and fx) denotes an outward normal to 8%, the divergence theorem yiclds

Lot ) = [ w(tx)w(tux), A(x)Ax)dx . 3)

dt T

Change control from "position h" to velocity u(t,x) = h{t,x) =w(t,x), x €T;. From (3), a

natural choice to decrcase energy is

u(t) = w(tx) = ~(wy(tx), AKMx), xET,. (4)

A great deal of the literature is devoted to an analysis of (3) with control choice (4). In 1] an
invariance principle (extended LaSalle principle as given by Hale) is used to show e(w(t,+)) — 0

as t — co. Under more special conditions on the shape of @ and with p(x) =1, A(x) =1, the

(14¢),

convergence rate e(w(t,*)) = t > 0, is obtained, where ¢ depends on the initial condi-

tions. It is well known {2], (3, Thm. 1], that solutions of the one-dimensional wave equation can
be driven to zero in finite time. conditions which insure this for quasi-linear hyperbolic equa-
tions can be found in [4]. For more general systems, exponential asymptotic estimates of rate of
energy decay can be found in (5], [6]. Recent results involving the physical character of sensors
and actuators in energy decay are given in [7]. Energy methods for boundary control of the

beam equation can be found in {8}, (9].

Our purpose, here, will be to stress geometry, optimality, the feedback nature of the ccn-
trols (with it the sensor placement problem) and to suggest interesting areas for further

research.
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1. The Endpoint Control of a Vibrating String

Let w(t,x) denote the vertical displacement at position x, 0 < x <1, and time t of a

string of length 1. The equation of motion is taken as

w,=w,, 0<x<1, t>0. (5)
Initial Conditions (IC): w(0,x) = &(x), w,(0,x) = n(x) (6a)
Boundary Conditions(BC): w(t,0) =0, w,(t,1) = u(t) = control (6b)

The problem is to use the velocity control (or one could use height or right endpoint position
control) to drive the solution to w(t,x) = w,(t;,x) =0, 0 < x < 1, for minimum time t;. Itis
well known, [2], [3], that for the length one string and arbitrary initial data this can be achieved

in time t; =2 and no smaller time suffices. Indeed, calculations give the explicit formula

21—y = n(1—), 0Lt <
U*(t) = 1 (7)
—{NE=1) +n(t-1)), 1<t<L2

For this simple problem, we see in (2) that T, = {0}, T, = {1}, while if we denote the

solution of (5), (6) as w(t,x,u) to explicitly show the u dependence,

qut— e(w(t’ *y u)) = u(t‘)wx(t" 1, u) : (8)

A natural choice (as in (4)) is to choose u(t) = —kw,(t,1,u), k > 0. The interesting thing (as
will be shown) is that the right side of (8) is quadratic in u and has minimum at k =1, ie,
u*(t) = —w,(t,1) is the optimal control. Indeed, one can see this by considering (5) with initial
conditions (6a) and (nonstandard) boundary conditions w(t,0) = 0, w(t,1) = —w,(t,1). This

problem can be explicitly solved by standard techniques; one readily finus that the solution

satisfies w(t,1) = u*(t) as given by (7).
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Finally, for the endpoint controlled string, we have
Proposition 1. The control choice u*(t) which pointwise minimizes
éj— e(w(t, -, u)) = u(t)w,(t, 1,u) satisfies u*(t) = —w,(t,1,u*) and is the optimal control.
L

To prove this, solve (5) with initial conditions (6a) and boundary conditions (6b), lraving
u(t) arbitrary, in a region R containing the right boundary x =1. Explicitly, for
R={(tx) x+t>1,x=t>0, x<1} one may show
2-x—t x+t—1

w(t,,x,u)=—(%)¢(2—x—t)+(%)¢(x—t)+(%} [ n(s)ds + ¢(1) + { u(s)ds .

x=t

This allows us to compute lim w,(tx,u), which, for 0<t<1, is
X—el”

w,(t,1,u) = ¢/(1—t) — n(1—t) + u(t). Substituting this in the equation for the time derivative of
e(w(t,~u))  shows % e(w(t, - u)) = u(t)[#(1=t) — n(1—t) +u(t)], 1<t<1  Let

f(u) = u(#—n+u). This quadratic has a minimum at u‘(t)=—-(%)(¢’(1—t)—r)(l—t)),

0<t< 1 A similar analysis shows that for 1 <t <2 u*t)= —(%)(é’(t—l) + n(t—1)).

Comparison with (7) shows u* is optimal.

‘l‘l
L

)
Sl
s The point to be stressed is the quadratic nature of the right side eq. (8) which assures an
s absolute, pointwise, minimum. It is also, geometrically, interesting to note that the intuitive
3 .:f:
.2 idea of choosing the right endpoint (i.e., w,(t,1)) to be the negative of the slope of the wave at
h.'.\
-"-\

this endpoint (ie., —w,(t,1)), is optimal.

o,

.l

2. Endpoint Energy Control of a Beam

For ease of exposition we use the overly simple beam model
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PwWy, +Elw =0, 0<x<!, t2>0 (9)

LC. w(0x) =¢(x), w(0x)=n(x), 0<x<1

We assume a free right end yielding right boundary conditions

B.C(R): w(t.I) =w,(t,{)=0

The left boundary conditions will involve the controls and yield three natural problems.

Before discussing these, we note the energy now is

{
e(w(t, ")) =(%) { (pw?2 + Elw2 )dx (10)
which, using B.C.(R), satisfies
:—t e(w(t, ")) = EIw,(t,0)w,(t,0) — Elw,,(t,0)w(t,0) . (11)

Problem 1. The left endpoint velocity, i.e. w,(t,0), is the control and this end of the beam is

held so as to always have w,(t,0) =0. This zives left boundary conditions
B.C.(L): w(t,0) = u(t) =control, w,(t0)=0

Problem 2. Consider the left end of the beam fixed at zero with the initi.l slope, w,(t,0), the

control. More precisely, we take the time rate of change of the initial slope as control.
B.C.(L): w(t,0) =0 (or w(t,0) =0), w,(t,0) = u(t) = control
Problem 3. Both initial (left end) height and slope are controllable.

B.C.(L): wy(t,0) = u(t), w(t0)=u,t)

Motivated by the results of the one-dimensional wave equation, we sce each problem sug-

gests a natural control choice to decrease energy, i.e., in problem 1 choose u(t) = —w(t,0); in

problem 2 choose u(t) =w,(t,0), in problem 3 choose uy(t) = =w . (t0), ua(t) =w(t.0). Are
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N these choices (or positive multiples of them) optimal? For the sake of brevity, we examine only
A
of
problem 2 for which (11) becomes
d
: L el ) = ~Elwg(t.0lw o (t00) (12)
.
= —Elu(t)}w,(t,0,u)
where (again) stress of dependence of w on u is made clear where nceded. The choice
u(t) = w,(t,0) physically means pick the velocity of the initial slope to be the initial curvature;
a reasonable scheme! Also, physically, one expects |u| sufficiently large implies
d . 4 . d
=+ (t,,u)) >0 while u = 0 implies d—te(w(t,',u)) =0, ie., -d-t—e(w(t.,',u)) can be
spected to be convex in u with (when w,(t,0,u) # 0) a negative absolute minimum. To com-
pute, explicitly, one must calculate wy(t,0,u). This may be accomplished via the Heaviside
operational calculus, see [10, pg. 51]. Briefly, let p =%, h(t) = 7, (t,0) so ph = u, wh
denote the solution of (9) with homogeneous boundary conditions and (symbolically) express the
solution of problem 2 as w(t,x,u) = w'(t,x) + T(x)h(t). The nonhomogeneous part, i.e. v = Th,
must satisfy (EIT o + pp°T)v =0, T,(0) =1, T(0) =0, T,,(!) =0, Ty, (!) =0. Considering p
_'.'_: as a parameter, and letting a® = pp*/El, one finds
.r" T(x) = c,e* ¥/ 2cos(x Va/2 + coe* " sin(x Va/2) + cze™ " *cos(x Va/2) + c,e™ 7 sin(x Va/2)

We are interested in T, (0)h, from which it follows only ¢, ¢, are of importance. Using the

WS e

s boundary data and T as above, with tedious calculations one finds ¢, ~ \/B, Cq ~ \/;; Not-
'\('
A a n . . .
"‘ ing that o is a constant multiple of p, T (0)h ~ p*/*h = p'/?u which (see [10!) implies
o
d 't _uls)
e uis
TLOMMY) ~ — | === ds.
N de '({ Vi—s
\':'

Finally, for a computable constant ¢ we have the behavior
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m u)) ~ : = [ == ds. 13

% <o elw(t. s w) ~ u(t)wg(t.0) + cu(t) dt{ = ds (13)

Questions: 1. Can one carry out the above computations precisely and by choosing u to

5

minimize the right side of (13), explicitly calculate an optimal (for minimizing time to zero of
e(w(t,, u)) control u*?

2. Can one use e(w(t,*)) =y,(t), w,(t0) =y.(t) as two of a finite number (say n) of
measurements on a solution w such that y,, - --,y, satisfy a controlled system of ordinary

differential equations? If so, one would use control to drive y, to zero.
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